Datenbestand vom 26. Mai 2017

Warenkorb Dissertationsdruck Dissertationsverlag Institutsreihen     Preisrechner

DER VERLAG IST VOM 03.06.2017 BIS 18.06.2016 WEGEN BAYERISCHER PFINGSTFERIEN NUR PER EMAIL ERREICHBAR
IN DIESER ZEIT KÖNNEN KEINE NEUEN ISBN BESTELLT WERDEN. STARTEN SIE IHRE BUCHPRODUKTION DAHER ZUR
SICHERHEIT SPÄTESTENS AM 01.06.2017 MIT DEM UPLOAD IHRER VORHER VON UNS GEPRÜFTEN DATEI.

DIE BEARBEITUNG BESTELLTER ISBN ERFOLGT AUCH IN DEN FERIEN.
DIE DRUCKEREIEN LIEFERN AUTORENEXEMPLARE AUCH IN DIESER ZEIT NORMAL AUS.

aktualisiert am 26. Mai 2017

ISBN 9783843928878

Euro 120,00 inkl. 7% MwSt


978-3-8439-2887-8, Reihe Geowissenschaften

Matthias Zink
Soil Moisture Droughts in Germany: Retrospective Analysis, Parametric Uncertainty, and Monitoring

180 Seiten, Dissertation Friedrich-Schiller-Universität Jena (2016), Softcover, A4

Zusammenfassung / Abstract

Droughts are worldwide the second most severe natural disaster beside floods. In Europe, droughts are the costliest natural disasters with average expenses of 621 million EUR per event. The last severe drought event took place in 2003. It induced an agro-economic loss of 1.5 billion EUR in Germany alone. Such economical losses emphasize the need of an operational system for monitoring agricultural droughts in order to mitigate their negative consequences.

Observation-based monitoring of agricultural droughts, which are characterized by soil moisture deficits, is technically and economically not feasible on regional to national scales. Hydrologic modeling is the prime alternative to estimate soil moisture availability on large spatial domains. Such models are driven by meteorological observations and predict hydrological fluxes and states, such as soil moisture or evapotranspiration. Predictions of hydrologic models underlie several sources of uncertainties. These uncertainties arise from input data, model structure, initial conditions, and model parameters. The implications of parametric uncertainty to hydrologic predictions are analyzed herein.

The main objective of this work is to develop a monitoring system for agricultural droughts in Germany. The development of such a system includes several challenges. First, a spatially continuous dataset of soil moisture for entire Germany is derived from modeling. The parametric uncertainty of such hydrologic predictions is taken into account. Second, the propagation of parametric uncertainty of soil moisture to the identification of drought characteristics is estimated in order to evaluate the uncertainty inherent to such a monitoring system. Third, an approach to reduce the parametric uncertainty by using satellite retrieved land surface temperature data is investigated. And forth, an operational system providing drought information in near-real time is developed and implemented.