Datenbestand vom 06. September 2024

Warenkorb Datenschutzhinweis Dissertationsdruck Dissertationsverlag Institutsreihen     Preisrechner

aktualisiert am 06. September 2024

ISBN 9783843945011

84,00 € inkl. MwSt, zzgl. Versand


978-3-8439-4501-1, Reihe Fahrzeugtechnik

Roman Ließner
Deep Reinforcement Learning als Basis für das Hybridfahrzeug-Energiemanagement

114 Seiten, Dissertation Technische Universität Dresden (2020), Softcover, A5

Zusammenfassung / Abstract

Die Optimierung eines Hybridelektrofahrzeug-Energiemanagements ist aufgrund der umfangreichen, komplexen, nicht linearen Wechselwirkungen im System, sowie der größtenteils unbekannten Fahrzeugnutzung ein herausforderndes Unterfangen. Die Optimierung erfordert die Berücksichtigung zahlreicher, wertkontinuierlicher Sensor- und Stellgrößen sowie das Handhaben unsicheren Wissens wobei sich die getroffenen Entscheidungen langfristig auf die Zielgröße des Verbrauchs auswirken. In dieser Arbeit wird ein Energiemanagement auf Grundlage des Deep Reinforcement Learning vorgestellt. Unabhängig von Verkehrssituation, Fahrstil und Fahrdauer erzielt dieses Kraftstoffeinsparungen. Der Ansatz berücksichtigt im Vergleich zu klassischen Verfahren weitere Zustandsgrößen wie die Batterietemperatur und das Derating und steuert ebenso die Batteriekühlung.