Datenbestand vom 17. April 2024

Warenkorb Datenschutzhinweis Dissertationsdruck Dissertationsverlag Institutsreihen     Preisrechner

aktualisiert am 17. April 2024

ISBN 9783843951135

45,00 € inkl. MwSt, zzgl. Versand


978-3-8439-5113-5, Reihe Thermodynamik

Judith Richter
Ein Beitrag zum Verständnis transsonischer, beschleunigter Strömungen im Nachlauf zweier Zentralinjektoren

211 Seiten, Dissertation Universität Stuttgart (2021), Softcover, A5

Zusammenfassung / Abstract

Die Vermischung zweier oder mehrerer gasförmiger Substanzen ist Basis zahlreicher technischer Anwendungen, in denen eine chemische Reaktion abläuft, z.B. bei der Herstellung von Nanopartikeln in einem Stoßwellen-Strömungsreaktor. In diesem wird ein Präkursor über einen Zentralinjektor in eine beschleunigte, transsonische, gasdynamisch gekühlte Umgebungsströmung eingebracht. Wegen der hohen Geschwindigkeit ist die Verweilzeit im Reaktor kurz - eine Herausforderung für den Mischungsvorgang im Nachlauf des Zentralinjektors. Um diesen Mischungsvorgang technisch zu optimieren, bedarf es eines fundierten physikalischen Verständnisses der vorliegenden Strömungsphänomene. Die vorliegende Arbeit hat es sich zum Ziel gesetzt, anhand zweier Referenzfälle transsonische Nachlaufströmungen systematisch zu untersuchen.

Zu diesem Zweck wurden zwei tropfenförmige Zentralinjektoren exemplarisch ausgewählt, deren stumpfe Hinterkanten jeweils stromauf bzw. stromab des Düsenhalses einer Lavaldüse positioniert waren. Die Strömungsphänomene in den Injektornachläufen sind charakteristisch für eine anfängliche Unterschall- und eine reine Überschallnachlaufströmung und eignen sich somit hervorragend für die Grundlagenuntersuchung transsonischer Nachlaufströmungen.

Im Rahmen dieser Arbeit wurden umfassende experimentelle Untersuchungen mit komplementärer Messtechnik durchgeführt. Der Datensatz umfasst u.a. die Geschwindigkeitsverteilung (Particle Image Velocimetry, PIV), die räumliche Verteilung der Injektorströmung (laserinduzierte Fluoreszenz, LIF) sowie Machzahl- und Temperaturprofile (laserinduzierte thermische Akustik, LITA). Weiterhin wurden die beiden Setups mittels numerischer Simulation durch Lösen der Reynolds-gemittelten Navier-Stokes (RANS) Gleichungen unter Verwendung des Shear Stress Transport (SST) Turbulenzmodells in ANSYS CFX untersucht.