Datenbestand vom 17. April 2024

Warenkorb Datenschutzhinweis Dissertationsdruck Dissertationsverlag Institutsreihen     Preisrechner

aktualisiert am 17. April 2024

ISBN 978-3-8439-2564-8

84,00 € inkl. MwSt, zzgl. Versand


978-3-8439-2564-8, Reihe Physik

Adam Bühler
Quantum Simulator for Spin-Orbital Magnetism

201 Seiten, Dissertation Universität Stuttgart (2016), Softcover, A5

Zusammenfassung / Abstract

In this dissertation we focus on many-body phenomena on a quantum level. In particular fermionic quantum gases in a temperature regime approaching absolute zero. Ultracold quantum gases have proven to be a versatile framework for Theorists and Experimentalists to probe many-body quantum mechanics. They also serve to quantum simulate solid state problems in a clean and controllable environment. The use of optical lattices include the advantage of tuning the required lattice structure nearly at will and lack the experimental shortcomings compared to the solid state, like the presence of lattice dislocations. The relevant lattice parameters can be easily tuned without changing the setup. In recent years many goals within theory and experiments of ultracold quantum gases in optical lattices were achieved. This emphasizes the significance of ongoing research with ultracold quantum gases on optical lattices.

We present two aspects of modern theory of ultracold quantum gases in optical lattices. On the one hand, we implement orbital physics in a setup of optical lattices and on the other, we find elusive Majorana fermions in a setup with ultracold fermionic gases. Both aspects are well-known in solid state systems, but did not make the step towards ultracold quantum gases so far. We propose and investigate setups to quantum simulate these challenges in the framework of optical lattices.