Datenbestand vom 06. September 2024
Tel: 0175 / 9263392 Mo - Fr, 9 - 12 Uhr
Impressum Fax: 089 / 66060799
aktualisiert am 06. September 2024
978-3-8439-4821-0, Reihe Apparatedesign
Verena Fath Continuous Processing of Complex Chemical Reactions with Autonomous Self-Optimization
270 Seiten, Dissertation Technische Universität Dortmund (2021), Softcover, A5
Although chemical reactions that exhibit complex mechanisms constitute vital components of various manufacturing processes, their investigation through traditional batch procedures has encountered several challenges. Unstable intermediates may pose safety issues due to thermal decomposition, and by-product formation is difficult to prevent. Based on recent advances in microreactor technology, this dissertation applies continuous processing procedures to complex reactions. It contributes to the extant work by improving existing approaches while also developing new ones.
In particular, the first two research projects outline how to obtain and model kinetic data in a reliable manner through real-time reaction monitoring, even when complex reaction mechanisms involving thermally-unstable lithiated intermediates are concerned. An in-depth process understanding can thereby be obtained, which constitutes a prerequisite for a subsequent scale-up.
Afterwards, the third research project details how firms may simplify the ramp-up of their production processes considerably by replacing extensive pilot scale trials with model-based scale-up predictions.
The fourth and fifth research projects then shift the focus to the optimization of established production processes. They develop an autonomous and versatile self-optimization platform capable of simultaneously maximizing production output, minimizing by-product formation, and collecting kinetic data. Finally, they conclude by refining existing optimization algorithms, thereby improving the platform’s performance further.
Overall, research and industry alike will find value in this dissertation, as it unveils opportunities along the entire production/ experimentation process to increase efficiency and foster sustainability, from the early stages of understanding a reaction mechanism to self-optimization of an installed production line.